What is i^i?
According to the great well-known Euler's formula:
$$e^{i\theta} = \cos\theta + i\sin\theta$$
Let \(\theta = \pi/2\), then:
$$\begin{align*} e^{i \pi / 2} &= cos(\pi/2) + i sin(\pi/2)\\ &= 0 + i \times 1 \\ &= i \end{align*}$$
Now, doing a substitution \(i\) with \(e^{i\pi/2}\):
$$i^i = (e^{i \pi / 2})^i = (e^{\pi / 2})^{i^2} = e^{- \pi / 2} =0.207879…$$
How beautiful!